Serveur d'exploration sur le peuplier

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.

Identifieur interne : 002B06 ( Main/Exploration ); précédent : 002B05; suivant : 002B07

Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.

Auteurs : Paul D. Nabity [États-Unis] ; Michael L. Hillstrom ; Richard L. Lindroth ; Evan H. Delucia

Source :

RBID : pubmed:22358995

Descripteurs français

English descriptors

Abstract

Herbivory can influence ecosystem productivity, but recent evidence suggests that damage by herbivores modulates potential productivity specific to damage type. Because productivity is linked to photosynthesis at the leaf level, which in turn is influenced by atmospheric CO(2) concentrations, we investigated how different herbivore damage types alter component processes of photosynthesis under ambient and elevated atmospheric CO(2). We examined spatial patterns in chlorophyll fluorescence and the temperature of leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as by leaf-chewing insects in birch trees under ambient and elevated CO(2) at the aspen free-air CO(2) enrichment (FACE) site in Wisconsin. Both defoliation and gall damage suppressed the operating efficiency of photosystem II (ΦPSII) in remaining leaf tissue, and the distance that damage propagated into visibly undamaged tissue was marginally attenuated under elevated CO(2). Elevated CO(2) increased leaf temperatures, which reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results provide mechanistic insight into how different damage types influence the remaining, visibly undamaged leaf tissue, and suggest that elevated CO(2) may reduce the effects of herbivory on the primary photochemistry controlling photosynthesis.

DOI: 10.1007/s00442-012-2261-8
PubMed: 22358995


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.</title>
<author>
<name sortKey="Nabity, Paul D" sort="Nabity, Paul D" uniqKey="Nabity P" first="Paul D" last="Nabity">Paul D. Nabity</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana-Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana-Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Delucia, Evan H" sort="Delucia, Evan H" uniqKey="Delucia E" first="Evan H" last="Delucia">Evan H. Delucia</name>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2012">2012</date>
<idno type="RBID">pubmed:22358995</idno>
<idno type="pmid">22358995</idno>
<idno type="doi">10.1007/s00442-012-2261-8</idno>
<idno type="wicri:Area/Main/Corpus">002B29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">002B29</idno>
<idno type="wicri:Area/Main/Curation">002B29</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">002B29</idno>
<idno type="wicri:Area/Main/Exploration">002B29</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.</title>
<author>
<name sortKey="Nabity, Paul D" sort="Nabity, Paul D" uniqKey="Nabity P" first="Paul D" last="Nabity">Paul D. Nabity</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana-Champaign, IL, 61801, USA.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana-Champaign, IL, 61801</wicri:regionArea>
<wicri:noRegion>61801</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
</author>
<author>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</author>
<author>
<name sortKey="Delucia, Evan H" sort="Delucia, Evan H" uniqKey="Delucia E" first="Evan H" last="Delucia">Evan H. Delucia</name>
</author>
</analytic>
<series>
<title level="j">Oecologia</title>
<idno type="eISSN">1432-1939</idno>
<imprint>
<date when="2012" type="published">2012</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Animals (MeSH)</term>
<term>Arthropods (MeSH)</term>
<term>Betula (drug effects)</term>
<term>Betula (physiology)</term>
<term>Carbon Dioxide (pharmacology)</term>
<term>Chlorophyll (metabolism)</term>
<term>Feeding Behavior (MeSH)</term>
<term>Fluorescence (MeSH)</term>
<term>Herbivory (MeSH)</term>
<term>Insecta (MeSH)</term>
<term>Plant Leaves (physiology)</term>
<term>Populus (drug effects)</term>
<term>Populus (physiology)</term>
<term>Temperature (MeSH)</term>
<term>Wisconsin (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Animaux (MeSH)</term>
<term>Arthropodes (MeSH)</term>
<term>Betula (effets des médicaments et des substances chimiques)</term>
<term>Betula (physiologie)</term>
<term>Chlorophylle (métabolisme)</term>
<term>Comportement alimentaire (MeSH)</term>
<term>Dioxyde de carbone (pharmacologie)</term>
<term>Feuilles de plante (physiologie)</term>
<term>Fluorescence (MeSH)</term>
<term>Herbivorie (MeSH)</term>
<term>Insectes (MeSH)</term>
<term>Populus (effets des médicaments et des substances chimiques)</term>
<term>Populus (physiologie)</term>
<term>Température (MeSH)</term>
<term>Wisconsin (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Chlorophyll</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Carbon Dioxide</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Betula</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Chlorophylle</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Dioxyde de carbone</term>
</keywords>
<keywords scheme="MESH" qualifier="physiologie" xml:lang="fr">
<term>Betula</term>
<term>Feuilles de plante</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" qualifier="physiology" xml:lang="en">
<term>Betula</term>
<term>Plant Leaves</term>
<term>Populus</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Arthropods</term>
<term>Feeding Behavior</term>
<term>Fluorescence</term>
<term>Herbivory</term>
<term>Insecta</term>
<term>Temperature</term>
<term>Wisconsin</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Animaux</term>
<term>Arthropodes</term>
<term>Comportement alimentaire</term>
<term>Fluorescence</term>
<term>Herbivorie</term>
<term>Insectes</term>
<term>Température</term>
<term>Wisconsin</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Herbivory can influence ecosystem productivity, but recent evidence suggests that damage by herbivores modulates potential productivity specific to damage type. Because productivity is linked to photosynthesis at the leaf level, which in turn is influenced by atmospheric CO(2) concentrations, we investigated how different herbivore damage types alter component processes of photosynthesis under ambient and elevated atmospheric CO(2). We examined spatial patterns in chlorophyll fluorescence and the temperature of leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as by leaf-chewing insects in birch trees under ambient and elevated CO(2) at the aspen free-air CO(2) enrichment (FACE) site in Wisconsin. Both defoliation and gall damage suppressed the operating efficiency of photosystem II (ΦPSII) in remaining leaf tissue, and the distance that damage propagated into visibly undamaged tissue was marginally attenuated under elevated CO(2). Elevated CO(2) increased leaf temperatures, which reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results provide mechanistic insight into how different damage types influence the remaining, visibly undamaged leaf tissue, and suggest that elevated CO(2) may reduce the effects of herbivory on the primary photochemistry controlling photosynthesis.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">22358995</PMID>
<DateCompleted>
<Year>2012</Year>
<Month>11</Month>
<Day>30</Day>
</DateCompleted>
<DateRevised>
<Year>2018</Year>
<Month>11</Month>
<Day>13</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1432-1939</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>169</Volume>
<Issue>4</Issue>
<PubDate>
<Year>2012</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>Oecologia</Title>
<ISOAbbreviation>Oecologia</ISOAbbreviation>
</Journal>
<ArticleTitle>Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.</ArticleTitle>
<Pagination>
<MedlinePgn>905-13</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1007/s00442-012-2261-8</ELocationID>
<Abstract>
<AbstractText>Herbivory can influence ecosystem productivity, but recent evidence suggests that damage by herbivores modulates potential productivity specific to damage type. Because productivity is linked to photosynthesis at the leaf level, which in turn is influenced by atmospheric CO(2) concentrations, we investigated how different herbivore damage types alter component processes of photosynthesis under ambient and elevated atmospheric CO(2). We examined spatial patterns in chlorophyll fluorescence and the temperature of leaves damaged by leaf-chewing, gall-forming, and leaf-folding insects in aspen trees as well as by leaf-chewing insects in birch trees under ambient and elevated CO(2) at the aspen free-air CO(2) enrichment (FACE) site in Wisconsin. Both defoliation and gall damage suppressed the operating efficiency of photosystem II (ΦPSII) in remaining leaf tissue, and the distance that damage propagated into visibly undamaged tissue was marginally attenuated under elevated CO(2). Elevated CO(2) increased leaf temperatures, which reduced the cooling effect of gall formation and freshly chewed leaf tissue. These results provide mechanistic insight into how different damage types influence the remaining, visibly undamaged leaf tissue, and suggest that elevated CO(2) may reduce the effects of herbivory on the primary photochemistry controlling photosynthesis.</AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Nabity</LastName>
<ForeName>Paul D</ForeName>
<Initials>PD</Initials>
<AffiliationInfo>
<Affiliation>Department of Plant Biology, University of Illinois, 265 Morrill Hall, 505 South Goodwin Avenue, Urbana-Champaign, IL, 61801, USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Hillstrom</LastName>
<ForeName>Michael L</ForeName>
<Initials>ML</Initials>
</Author>
<Author ValidYN="Y">
<LastName>Lindroth</LastName>
<ForeName>Richard L</ForeName>
<Initials>RL</Initials>
</Author>
<Author ValidYN="Y">
<LastName>DeLucia</LastName>
<ForeName>Evan H</ForeName>
<Initials>EH</Initials>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
<PublicationType UI="D013486">Research Support, U.S. Gov't, Non-P.H.S.</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2012</Year>
<Month>02</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Germany</Country>
<MedlineTA>Oecologia</MedlineTA>
<NlmUniqueID>0150372</NlmUniqueID>
<ISSNLinking>0029-8549</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>1406-65-1</RegistryNumber>
<NameOfSubstance UI="D002734">Chlorophyll</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>142M471B3J</RegistryNumber>
<NameOfSubstance UI="D002245">Carbon Dioxide</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001181" MajorTopicYN="N">Arthropods</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D029662" MajorTopicYN="N">Betula</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002245" MajorTopicYN="N">Carbon Dioxide</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D002734" MajorTopicYN="N">Chlorophyll</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005247" MajorTopicYN="N">Feeding Behavior</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005453" MajorTopicYN="N">Fluorescence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D060434" MajorTopicYN="Y">Herbivory</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007313" MajorTopicYN="N">Insecta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032107" MajorTopicYN="N">Populus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000502" MajorTopicYN="Y">physiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013696" MajorTopicYN="N">Temperature</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D014922" MajorTopicYN="N">Wisconsin</DescriptorName>
</MeshHeading>
</MeshHeadingList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2011</Year>
<Month>02</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2012</Year>
<Month>01</Month>
<Day>15</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2012</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2012</Year>
<Month>2</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2012</Year>
<Month>12</Month>
<Day>10</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">22358995</ArticleId>
<ArticleId IdType="doi">10.1007/s00442-012-2261-8</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>New Phytol. 2009 Jun;182(4):891-911</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19383098</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2010 Oct;33(10):1597-613</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20444224</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Chem Ecol. 2010 Jan;36(1):2-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20054619</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2009 Feb;103(4):655-63</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18660492</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Environ Pollut. 2010 Jan;158(1):108-14</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19679383</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2012 Mar;168(3):863-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21971584</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ecology. 2006 Jul;87(7):1781-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16922327</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2006;57(3):527-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16377737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2008;59:89-113</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18444897</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2002 Jan 22;99(2):1088-91</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11792866</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2009;60(10):2859-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19401412</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2006 Aug;149(2):221-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16758220</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2011 Nov;167(3):701-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21618011</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Photosynth Res. 2002;74(3):281-93</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16245139</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 1997 Nov;112(4):492-501</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">28307626</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Environ. 2007 Sep;30(9):1150-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17661752</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2004 May;55(400):1195-205</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15107453</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oecologia. 2010 Aug;163(4):949-60</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20397030</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2007;173(3):537-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17244048</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
</list>
<tree>
<noCountry>
<name sortKey="Delucia, Evan H" sort="Delucia, Evan H" uniqKey="Delucia E" first="Evan H" last="Delucia">Evan H. Delucia</name>
<name sortKey="Hillstrom, Michael L" sort="Hillstrom, Michael L" uniqKey="Hillstrom M" first="Michael L" last="Hillstrom">Michael L. Hillstrom</name>
<name sortKey="Lindroth, Richard L" sort="Lindroth, Richard L" uniqKey="Lindroth R" first="Richard L" last="Lindroth">Richard L. Lindroth</name>
</noCountry>
<country name="États-Unis">
<noRegion>
<name sortKey="Nabity, Paul D" sort="Nabity, Paul D" uniqKey="Nabity P" first="Paul D" last="Nabity">Paul D. Nabity</name>
</noRegion>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PoplarV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 002B06 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 002B06 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PoplarV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:22358995
   |texte=   Elevated CO2 interacts with herbivory to alter chlorophyll fluorescence and leaf temperature in Betula papyrifera and Populus tremuloides.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:22358995" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PoplarV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Wed Nov 18 12:07:19 2020. Site generation: Wed Nov 18 12:16:31 2020